Generic selectors
Exact matches only
Search in title
Search in content

สร้าง AI ให้รู้ลึก รู้จริง! ทำความรู้จักว่า Deep Learning คืออะไร

19 ก.พ. 2020
SHARE

เทคโนโลยีในกลุ่มของปัญญาประดิษฐ์ (Artificial Intelligence – AI) ได้กลายเป็นเทคโนโลยีที่สามารถพบเห็นและใช้งานได้ในชีวิตประจำวัน โดยเฉพาะในสมาร์ทโฟนที่หลายต่อหลายคนใช้กัน ปัญญาประดิษฐ์สามารถแบ่งเป็นสองประเภท คือ การเรียนรู้ด้วยจักรกล หรือ Machine Learning และที่กำลังเป็นที่สนใจในปัจจุบันอย่างการเรียนรู้เชิงลึกหรือ Deep Learning 

Deep Learning คืออะไร เข้าใจง่ายๆ 

สิ่งหนึ่งที่ต้องทำความเข้าใจกันก่อนคือ แม้จะถูกแบ่งแยกออกเป็นสองประเภท แต่ Deep Learning เองก็ยังถือเป็นส่วนหนึ่งของ Machine Learning เพียงแต่วิธีการเรียนรู้เพื่อหาคำตอบของปัญญาประดิษฐ์นั้นแตกต่างกัน

Machine Learning คือการรับข้อมูลจำนวนมหาศาล เพื่อจดจำความแตกต่างหรือลักษณะเด่นและทำการแบ่งข้อมูลออกเป็นกลุ่ม เช่น หากมีปีกก็แยกไปกลุ่มนก ไม่มีปีกแต่มีสี่ขาก็แยกไปกลุ่มสุนัข ตามจุดเด่นที่เห็นได้ชัด เป็นต้น ยิ่งเรียนรู้มากก็จะยิ่งแยกแยะจุดเด่นดังกล่าวได้ดีขึ้น

Deep Learning คือการจำลองรูปแบบการประมวลผลของสมองมนุษย์ โดยใช้โครงข่ายคล้ายเซลล์ประสาทในการประมวลผล เมื่อได้รับข้อมูลมา Deep Learning จะทำการแบ่งแยกข้อมูลและรายละเอียดต่างๆ ที่ได้รับมาทั้งหมด แล้วนำมาประมวลผลหาจุดเด่นและจุดแตกต่างของข้อมูลในเชิงลึก คล้ายกับการกรองข้อมูลเป็นชั้นๆ แล้วสรุปผลข้อมูลออกมาเป็น Output และตรวจสอบว่าข้อมูลนั้นส่งผลอย่างไร ผิด หรือถูก

เช่น มีข้อมูลสัตว์ 1 ตัวที่ไม่ทราบว่าจะเป็นอะไร Deep Learning จะทำการตรวจสอบและคาดการณ์ ว่า ‘อาจจะเป็น’ สัตว์ชนิดนี้ โดยไม่จำเป็นต้องระบุว่ามีปีกหรือมีหาง Deep Learning แค่ ‘คาดการณ์’ เอาไว้ก่อน

หาก Deep Learning คาดการณ์ผิด ตัวมันจะเรียนรู้และปรับเปลี่ยนการประมวลผล เพื่อให้ Output ที่ออกมามีความถูกต้องมากขึ้น และยิ่งเรียนรู้มาก Deep Learning ก็จะเข้าใจได้มากขึ้น และลงลึกในรายละเอียดยิบย่อยได้มากขึ้น จนสามารถสังเกตความแตกต่างของข้อมูลได้แม้เพียงเล็กน้อยก็ตาม โดยที่มนุษย์ไม่จำเป็นต้องแนะนำ

การกระทำต่อเนื่องเป็นลำดับขั้นของ Deep Learning จึงเป็นที่มาของคำว่า “ลึก” (Deep)

Deep Learning

Deep Learning สามารถแบ่งคร่าวๆ เป็น สองประเภท คือ Feedforward Neural Network ที่ข้อมูลสามารถผ่านหน่วยประมวลผลได้เพียงทางเดียว ไม่ได้นำข้อมูลผลลัพธ์มาใช้ซ้ำ และ Recurrent Neural Network  ที่ข้อมูลก่อนหน้าจะถูกนำกลับมาใช้ใหม่เพื่อคาดการณ์ผลลัพธ์ที่จะเกิดขึ้นในอนาคต

ข้อดี – ข้อเสียของ Deep Learning 

Deep Learning คือ

ข้อดี

ข้อได้เปรียบสำคัญของ Deep Learning เมื่อเปรียบเทียบกับ Machine Learning รูปแบบอื่นๆ คือ

  • ไม่จำเป็นต้องจัดโครงสร้างข้อมูล

ข้อมูลส่วนใหญ่มักบรรจุอยู่ในรูปแบบที่แตกต่างกันไป ไม่ว่าจะเป็นข้อความ ตัวเลข รูปภาพ หรือเสียง ซึ่งไม่สามารถนำมาใช้ร่วมกันได้ และจำเป็นต้องแปลงข้อมูลให้เป็นรูปแบบเดียวกันก่อนนำไปประมวลผลต่อ ในขณะที่ Deep Learning สามารถหาความสัมพันธ์ของข้อมูลต่างรูปแบบกันได้ในทันที

  • ไม่จำเป็นต้องจัดหมวดหมู่ข้อมูล

การจัดหมวดหมู่ข้อมูลเป็นขั้นตอนที่มีต้นทุนสูงเป็นอย่างมาก ยกตัวอย่างเช่น การแยกรูปภาพระหว่าง “สุนัข” กับ “แมว” ซึ่งจำเป็นต้องบอกให้ Machine Learning รู้ว่ารูปใดคือสุนัข รูปใดคือแมว ด้วยการใช้ภาพสุนัขและภาพแมวมากกว่าพันรูปขึ้นไป แต่ขั้นตอนนี้ไม่จำเป็นสำหรับ Deep Learning เพราะกลไกของ Deep Learning สามารถเรียนรู้จนจำแนกสุนัขออกจากแมวด้วยตัวเองได้โดยอัตโนมัติ

  • ไม่จำเป็นต้องกำหนดการจับคู่ข้อมูลล่วงหน้า

ระบบ Machine Learning โดยทั่วไปต้องสั่งให้ระบบต้องจับคู่ข้อมูลตามที่กำหนดเพื่อให้ได้ผลลัพธ์ เช่น การจับคู่ค่าละติจูดและลองติจูดเพื่อให้ได้ค่าพิกัด  ส่วน Deep Learning สามารถหาความสัมพันธ์ระหว่างข้อมูลได้ด้วยตัวเอง ทำให้ Deep Learning สามารถหาความเชื่อมโยงระหว่างข้อมูลที่มนุษย์ไม่สามารถคาดการณ์ล่วงหน้าได้

ด้วยข้อได้เปรียบที่เหนือกว่า Machine Learning แบบอื่นๆ ทำให้ข้อดีของ Deep Learning คือความสามารถในการแก้ปัญหาที่ซับซ้อนได้อย่างหลากหลายและความยืดหยุ่นสูง โดยที่ใช้มนุษย์ในการดูแลเพียงเล็กน้อย 

ข้อเสีย

ข้อเสียของ Deep Learning เมื่อเปรียบเทียบกับ Machine Learning รูปแบบอื่นๆ คือ

  • ต้องการข้อมูลจำนวนมหาศาล

เงื่อนไขสำคัญที่ทำให้ Deep Learning สามารถแก้ปัญหาได้คือการ “เรียนรู้” จากข้อมูล นอกจากนี้ ความแม่นยำของ Deep Learning ยังแปรผันตรงกับปริมาณข้อมูล ยิ่งต้องการความแม่นยำจาก  Deep Learning มาก ผู้ใช้งานจำเป็นต้องเพิ่มข้อมูลในระบบมากตามไปด้วย ทำให้ข้อจำกัดของ Deep Learning คือความต้องการข้อมูลจำนวนมหาศาลอย่างไม่มีที่สิ้นสุด 

  • กลไกการทำงานที่ไม่สามารถอธิบายได้

การอธิบายกระบวนการของ Deep Learning ถือว่าเป็นสิ่งที่ซับซ้อนอย่างมาก เพราะหน่วยประมวลผลแต่ละหน่วยสามารถเรียนรู้ได้ด้วยตนเอง จึงทำให้เหตุผลในการ “ให้คำตอบ” ของแต่ละหน่วยประมวลผลอาจแตกต่างกันอย่างโดยสิ้นเชิง และการที่ Deep Learning ประกอบไปด้วยเครือข่ายของหน่วยประมวลผลจำนวนมาก จึงเป็นการยากที่จะให้เหตุผลที่ตายตัวกับผลลัพธ์ที่ได้จาก Deep Learning 

นอกจากนี้ผู้ใช้งาน Deep Learning ยังต้องลงทุนกับอุปกรณ์ที่มีประสิทธิภาพสูงเพื่อรองรับกับข้อมูลจำนวนมาก รวมถึงความต้องการผู้ดูแลระบบที่เข้าใจวิธีการทำงานของ Deep Learning เพื่อออกแบบการทำงานของ Deep Learning โดยเฉพาะ 

การใช้งาน Deep Learning ที่เห็นได้จริง

ในปัจจุบันมีการนำ Deep Learning ไปใช้กับงานที่เกี่ยวข้องกับข้อมูลปริมาณมาก เข่น

  • รถยนต์ขับเคลื่อนอัตโนมัติ (Autonomous Vehicles)

ระบบความปลอดภัยของรถยนต์ในปัจจุบันอย่างระบบควบคุมความเร็ว ระบบเบรกอัตโนมัติ หรือระบบเตือนเมื่อรถออกนอกเลน ต่างใช้ Deep Learning ในการแยกวัตถุที่อยู่รอบรถยนต์ไม่ว่าจะเป็นรถยนต์คันอื่น รถจักรยานยนต์ จักรยาน หรือแม้แต่คนเดินถนน ผ่านการดึงข้อมูลจากเซนเซอร์และกล้องจำนวนมากภายในรถยนต์ และนำมาคำนวนเพื่อหาทิศทางและความเร็วที่เหมาะสม หรือการอ่านข้อมูลจากป้ายเตือนต่างๆ และสั่งให้รถยนต์ลดความเร็วหรือหยุดได้ด้วยตนเอง

Deep Learning คือ

  • การวินิจฉัยโรค

Deep Learning ถูกนำมาเป็นเครื่องมือในการวินิจฉัยโรค เช่น การวินิจฉัยจากข้อมูลส่วนตัวของผู้ป่วยอย่างน้ำหนัก ส่วนสูง ค่าน้ำตาลในเลือดหรือค่าไขมันในเลือด เพื่อหาสาเหตุของอาการเจ็บป่วย หรือการวินิจฉัยจากภาพถ่ายทางการแพทย์เช่นภาพเอ็กซ์เรย์ ภาพอัลตราซาวนด์หรือภาพ MRI โดย  Deep Learning จะประมวลผลภาพถ่ายของผู้ป่วยโดยเปรียบเทียบกับฐานข้อมูลเพื่อค้นหาความผิดปกติอย่างเนื้องอกหรือมะเร็ง และระบุตำแหน่งของความผิดปกติที่เกิดขึ้นกับอวัยวะให้แพทย์ได้ทราบ ซึ่งช่วยลดเวลาในการวินิจฉัยโรคของแพทย์ได้เป็นอย่างมาก 

  • การแปลภาษา

ระบบแปลภาษาอย่าง Google Translate นั้นตั้งอยู่บนพื้นฐานของการใช้ Deep Learning สองขั้นตอน คือการวิเคราะห์ข้อมูลที่ผู้ใช้งานป้อนเข้าไป ในรูปของตัวอักษร รูปภาพและเสียง เพื่อเปรียบเทียบข้อมูลที่ถูกป้อนกับฐานข้อมูลคำในหลากหลายภาษาที่มีอยู่ และขั้นตอนของทำการแปลโดยใช้ Deep Learning เพื่อหาความหมายที่เหมาะสมที่สุดสำหรับคำที่ต้องการ

  • การสร้างประโยคหรือโต้ตอบกับมนุษย์

Deep Learning สามารถนำมาใช้ในการสร้างการโต้ตอบ เช่นการโต้ตอบกับข้อมูลที่ผู้ใช้ส่งเข้าไปยังบริการโต้ตอบอัตโนมัติอย่าง Siri, Alexa และ Google Assistant  หรือแม้แต่การสร้างงานที่ต้องการทักษะในการเขียนสูง เช่น นวนิยายหรือบทความวิชาการ โดย Deep Learning จะหาความเชื่อมโยงระหว่างคำหรือประโยคที่มีอยู่ในฐานข้อมูล และนำคำที่เกี่ยวข้องเหล่านี้มาสร้างเป็นประโยคหรือย่อหน้าที่มีความหมายสมบูรณ์ ซึ่งมีผู้นำ Deep Learning มาใช้ในการเขียนภาคต่อของนวนิยายชื่อดังอย่าง Harry Potter

  • เกม

โดยในปี 2016 ได้มีการจัดการแข่งขันหมากล้อมระหว่างลีเซดอล นักหมากล้อมแชมป์โลกชาวเกาหลีใต้ กับคอมพิวเตอร์อย่าง AlphaGo ที่ใช้ Deep Learning ในการวิเคราะห์เเละดำเนินเกม และด้วยความสามารถของ Deep Learning ที่พลิกแพลงการวางหมากได้อย่างคาดไม่ถึง ทำให้ AlphaGo สามารถเอาชนะมนุษย์ได้ถึง 4-1 เกม

Deep Learning คือ

ถึงแม้ว่า Deep Learning จะเป็น “กล่องดำ” ที่สามารถอธิบายหลักการทำงานชัดเจนได้ยาก แต่ด้วยพลังของเทคโนโลยีได้ทำให้ Deep Learning อยู่ใกล้ตัวกับชีวิตประจำวันได้มากกว่าที่คุณคิด

ร่วมเป็นส่วนหนึ่งในการสร้างสรรค์คอนเทนต์ให้ตรงใจคุณได้ง่ายๆ ด้วยการให้ฟีดแบคและคอมเมนต์กับเราได้ที่อิโมจิด้านขวานี้ ขอบคุณครับ

PTT_ebook-EV

  • SUBSCRIBE TO BE
    THE FIRST INNOVATOR.

logo